翻訳と辞書
Words near each other
・ Non-fermenter
・ Non-aligned Scouting and Scout-like organisations
・ Non-allelic homologous recombination
・ Non-analytic smooth function
・ Non-apology apology
・ Non-aqueous phase liquid
・ Non-Archimedean
・ Non-Archimedean geometry
・ Non-Archimedean ordered field
・ Non-Archimedean time
・ Non-Aristotelian drama
・ Non-Aristotelian logic
・ Non-assertion covenant
・ Non-associative algebra
・ Non-attainment area
Non-autonomous mechanics
・ Non-autonomous system (mathematics)
・ Non-availability approach
・ Non-B database
・ Non-bank financial institution
・ Non-bank subsidiary
・ Non-banking financial company
・ Non-belligerent
・ Non-binding arbitration
・ Non-binding opinion
・ Non-binding opinion (United Kingdom patent law)
・ Non-binding resolution
・ Non-blocking
・ Non-blocking algorithm
・ Non-blocking I/O (Java)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Non-autonomous mechanics : ウィキペディア英語版
Non-autonomous mechanics
Non-autonomous mechanics describe non-relativistic mechanical systems subject to time-dependent transformations. In particular, this is the case of mechanical systems whose Lagrangians and Hamiltonians depend on the time. The configuration space of non-autonomous mechanics is a fiber bundle Q\to \mathbb R over the time axis \mathbb R coordinated by (t,q^i).
This bundle is trivial, but its different trivializations Q=\mathbb R\times M correspond to the choice of different non-relativistic reference frames. Such a reference frame also is represented by a connection
\Gamma on Q\to\mathbb R which takes a form \Gamma^i =0 with respect to this trivialization. The corresponding covariant differential (q^i_t-\Gamma^i)\partial_i
determines the relative velocity with respect to a reference frame \Gamma.
As a consequence, non-autonomous mechanics (in particular, non-autonomous Hamiltonian mechanics) can be formulated as a covariant classical field theory (in particular covariant Hamiltonian field theory) on X=\mathbb R. Accordingly, the velocity phase space of non-autonomous mechanics is the jet manifold J^1Q of Q\to \mathbb R provided with the coordinates (t,q^i,q^i_t). Its momentum phase space is the vertical cotangent bundle VQ of Q\to \mathbb R coordinated by (t,q^i,p_i) and endowed with the canonical Poisson structure. The dynamics of Hamiltonian non-autonomous mechanics is defined by a Hamiltonian form p_idq^i-H(t,q^i,p_i)dt.
One can associate to any Hamiltonian non-autonomous system an equivalent Hamiltonian autonomous system on the cotangent bundle TQ of Q coordinated by (t,q^i,p,p_i) and provided with the canonical symplectic form; its Hamiltonian is p-H.
== References ==

* De Leon, M., Rodrigues, P., Methods of Differential Geometry in Analytical Mechanics (North Holland, 1989).
* Echeverria Enriquez, A., Munoz Lecanda, M., Roman Roy, N., Geometrical setting of time-dependent regular systems. Alternative models, Rev. Math. Phys. 3 (1991) 301.
* Carinena, J., Fernandez-Nunez, J., Geometric theory of time-dependent singular Lagrangians, Fortschr. Phys., 41 (1993) 517.
* Mangiarotti, L., Sardanashvily, G., Gauge Mechanics (World Scientific, 1998) ISBN 981-02-3603-4.
* Giachetta, G., Mangiarotti, L., Sardanashvily, G., Geometric Formulation of Classical and Quantum Mechanics (World Scientific, 2010) ISBN 981-4313-72-6 ((arXiv: 0911.0411 )).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Non-autonomous mechanics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.